This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.
翻译:本文引入了层集概念, 描述如何重新利用前层的信息来更好地提取当前层的特征。 虽然 DenseNet 是层集机制的一个典型例子, 但其冗余在文献中受到普遍批评。 这促使我们提出一个非常轻量的模块, 称为重复层集( RLA ), 利用深层CNN 中的相继层结构。 我们的 LA 模块与许多主流深层CNN 相容, 包括 ResNet、 Xcepion 和 MobtNetV2, 并且通过我们在图像分类、 对象探测和实例分割任务方面的广泛实验来验证其有效性。 具体地说, 在 CIRFAR、 图像Net 和 MS COCO 数据集上可以一致地观察到改进, 而相应的 RLA- Net 可以令人惊讶地将物体探测任务上的性能提升到2- 3 % 。 这证明了我们的 LA 模块在帮助主要CNN 更好地学习图像结构信息方面的力量 。