Undirected graphical models have been widely used to model the conditional independence structure of high-dimensional random vector data for years. In many modern applications such as EEG and fMRI data, the observations are multivariate random functions rather than scalars. To model the conditional independence of this type of data, functional graphical models are proposed and have attracted an increasing attention in recent years. In this paper, we propose a neighborhood selection approach to estimate Gaussian functional graphical models. We first estimate the neighborhood of all nodes via function-on-function regression, and then we can recover the whole graph structure based on the neighborhood information. By estimating conditional structure directly, we can circumvent the need of a well-defined precision operator which generally does not exist. Besides, we can better explore the effect of the choice of function basis for dimension reduction. We give a criterion for choosing the best function basis and motivate two practically useful choices, which we justified by both theory and experiments and show that they are better than expanding each function onto its own FPCA basis as in previous literature. In addition, the neighborhood selection approach is computationally more efficient than fglasso as it is more easy to do parallel computing. The statistical consistency of our proposed methods in high-dimensional setting are supported by both theory and experiment.


翻译:无方向图形模型被广泛用于模拟多年来高维随机矢量数据的有条件独立结构。在诸如 EEG 和 FMRI 数据等许多现代应用中,观测是多变随机函数,而不是星标。为模拟这类数据有条件独立,提出了功能图形模型,近年来引起了越来越多的注意。在本文件中,我们提出了一个社区选择方法,以估计高萨功能图形模型。我们首先通过功能对功能回归功能来估计所有节点的周边,然后我们可以根据周边信息恢复整个图形结构。通过直接估算有条件结构,我们可以避免需要一个通常不存在的明确界定的精确操作器。此外,我们可以更好地探讨为尺寸缩减选择功能基础选择功能的效果。我们给出了选择最佳功能基础的标准,并激励了两种实际有用的选择,我们从理论和实验角度来解释这些选择,并表明它们比将每个函数扩展到以前的 FPCA 基础要好得多。此外,通过直接估算有条件结构,我们可以避免需要一个定义精准的精确操作器。此外,我们提出的社区选择方法比远比远比远方物理学更容易进行平行的实验,因为其理论是比较容易的平行的。我们提议的统计计算方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning latent causal graphs via mixture oracles
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员