Contrastive Vision-Language Pre-training (CLIP) has drown increasing attention recently for its transferable visual representation learning. Supervised by large-scale image-text pairs, CLIP is able to align paired images and texts and thus conduct zero-shot recognition in open-vocabulary scenarios. However, there exists semantic gap between the specific application and generally pre-trained knowledge, which makes the matching sub-optimal on downstream tasks. In this paper, we propose VT-CLIP to enhance vision-language modeling via visual-guided texts. Specifically, we guide the text feature to adaptively explore informative regions on the image and aggregate the visual feature by cross-attention machanism. In this way, the visual-guided text become more semantically correlated with the image, which greatly benefits the matching process. In few-shot settings, we evaluate our VT-CLIP on 11 well-known classification datasets and experiment extensive ablation studies to demonstrate the effectiveness of VT-CLIP. The code will be released soon.


翻译:最近,在大型图像-文本配对的监督下,CLIP能够对配对图像和文本进行对齐,从而在开放式词汇假设中进行零光识别;然而,在具体应用和一般培训前知识之间存在语义上的差距,这使得在下游任务上匹配的亚最佳水平。在本文中,我们提议VT-CLIP通过视觉-指导文本加强视觉-语言建模。具体地说,我们指导文本特征,以适应性的方式探索图像信息区域,并通过交叉注意机械化将视觉特征汇总在一起。这样,视觉制导文本与图像的语义关系就变得更为密切,这对匹配过程大有裨益。在几个镜头中,我们用11个众所周知的分类数据集来评估我们的VT-CLIP,并试验广泛的实验性研究,以显示VT-CLIP的有效性。该代码将很快发布。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员