The image synthesis technique is relatively well established which can generate facial images that are indistinguishable even by human beings. However, all of these approaches uses gradients to condition the output, resulting in the outputting the same image with the same input. Also, they can only generate images with basic expression or mimic an expression instead of generating compound expression. In real life, however, human expressions are of great diversity and complexity. In this paper, we propose an evolutionary algorithm (EA) assisted GAN, named EvoGAN, to generate various compound expressions with any accurate target compound expression. EvoGAN uses an EA to search target results in the data distribution learned by GAN. Specifically, we use the Facial Action Coding System (FACS) as the encoding of an EA and use a pre-trained GAN to generate human facial images, and then use a pre-trained classifier to recognize the expression composition of the synthesized images as the fitness function to guide the search of the EA. Combined random searching algorithm, various images with the target expression can be easily sythesized. Quantitative and Qualitative results are presented on several compound expressions, and the experimental results demonstrate the feasibility and the potential of EvoGAN.


翻译:图像合成技术是相当完善的,可以产生面部图像,即使人类也无法区分。然而,所有这些方法都使用梯度来调节输出结果,导致以同样的输入输出相同的图像。此外,它们只能产生基本表达方式或模仿表达方式而不是复合表达方式的图像。然而,在现实生活中,人类的表达方式具有极大的多样性和复杂性。在本文中,我们提议了一个由帮助的GAN(EA) 协助的GAN(名为EvoGAN) 演化算法(EA), 以生成具有任何精确目标复合表达式的各种复合表达式。 EvoGAN 使用EA 搜索GAN 来搜索GAN 所学数据分布结果的目标结果。 具体而言,我们使用 Facial Action Coding System(FACS) 来编译一个EA, 使用预先训练过的GAN 来生成人类面部图像, 然后使用预先训练的分类方法来识别合成图像的表达形式构成, 以指导EA 的搜索功能。 随机搜索算法, 与目标表达式的各种图像可以轻松地显示。量化和定性结果, 在几种复合表达式上展示了EAN的可能性和实验结果。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
151+阅读 · 2020年12月30日
专知会员服务
61+阅读 · 2020年3月19日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Arxiv
0+阅读 · 2021年12月18日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2020年7月16日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
151+阅读 · 2020年12月30日
专知会员服务
61+阅读 · 2020年3月19日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
相关论文
Arxiv
0+阅读 · 2021年12月18日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2020年7月16日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员