The advancement of general-purpose intelligent agents is intrinsically linked to the environments in which they are trained. While scaling models and datasets has yielded remarkable capabilities, scaling the complexity, diversity, and interactivity of environments remains a crucial bottleneck. Hand-crafted environments are finite and often contain implicit biases, limiting the potential for agents to develop truly generalizable and robust skills. In this work, we propose a paradigm for generating a boundless and adaptive curriculum of challenges by framing the environment generation process as an adversarial game. We introduce a system where a team of cooperative multi-agent defenders learns to survive against a procedurally generative attacker. The attacker agent learns to produce increasingly challenging configurations of enemy units, dynamically creating novel worlds tailored to exploit the defenders' current weaknesses. Concurrently, the defender team learns cooperative strategies to overcome these generated threats. This co-evolutionary dynamic creates a self-scaling environment where complexity arises organically from the adversarial interaction, providing an effectively infinite stream of novel and relevant training data. We demonstrate that with minimal training, this approach leads to the emergence of complex, intelligent behaviors, such as flanking and shielding by the attacker, and focus-fire and spreading by the defenders. Our findings suggest that adversarial co-evolution is a powerful mechanism for automatically scaling environmental complexity, driving agents towards greater robustness and strategic depth.
翻译:暂无翻译