In this work, we study emergent communication through the lens of cooperative multi-agent behavior in nature. Using insights from animal communication, we propose a spectrum from low-bandwidth (e.g. pheromone trails) to high-bandwidth (e.g. compositional language) communication that is based on the cognitive, perceptual, and behavioral capabilities of social agents. Through a series of experiments with pursuit-evasion games, we identify multi-agent reinforcement learning algorithms as a computational model for the low-bandwidth end of the communication spectrum.
翻译:在这项工作中,我们从合作性多剂行为的角度研究突发通信。我们利用动物通信的洞察力,提出了从低带宽(例如费罗蒙踪迹)到高带宽(例如组成语言)通信的频谱,这种频谱以社会代理人的认知、感知和行为能力为基础。通过一系列追逐-规避游戏的实验,我们确定多剂强化学习算法作为通信频谱低带宽端的计算模型。