We consider the problem of simultaneous learning in stochastic games with many players in the finite-horizon setting. While the typical target solution for a stochastic game is a Nash equilibrium, this is intractable with many players. We instead focus on variants of {\it correlated equilibria}, such as those studied for extensive-form games. We begin with a hardness result for the adversarial MDP problem: even for a horizon of 3, obtaining sublinear regret against the best non-stationary policy is \textsf{NP}-hard when both rewards and transitions are adversarial. This implies that convergence to even the weakest natural solution concept -- normal-form coarse correlated equilbrium -- is not possible via black-box reduction to a no-regret algorithm even in stochastic games with constant horizon (unless $\textsf{NP}\subseteq\textsf{BPP}$). Instead, we turn to a different target: algorithms which {\it generate} an equilibrium when they are used by all players. Our main result is algorithm which generates an {\it extensive-form} correlated equilibrium, whose runtime is exponential in the horizon but polynomial in all other parameters. We give a similar algorithm which is polynomial in all parameters for "fast-mixing" stochastic games. We also show a method for efficiently reaching normal-form coarse correlated equilibria in "single-controller" stochastic games which follows the traditional no-regret approach. When shared randomness is available, the two generative algorithms can be extended to give simultaneous regret bounds and converge in the traditional sense.


翻译:我们考虑的是与许多玩家一起在有限偏顺设置的软盘游戏中同时学习的问题。 虽然随机游戏的典型目标解决方案是纳什平衡, 但对于许多玩家来说,这是棘手的。 我们更关注的是 {it 相关 equilibria} 的变体, 比如那些为广度游戏而研究的变体。 我们从对敌对的 MDP 问题的一个硬性结果开始: 即使是在3 的地平线上, 当奖赏和过渡都是对立的时, 获得对最佳非静止政策的亚线性遗憾是硬的。 这意味着即使最弱的自然解决方案概念 -- -- 正常- 正常- 变形变色相对的 quilbrium -- 也不可能通过黑箱减为无色的算法, 即使是在恒定的游戏中( $\ textfsf{NPZ} sucolicechachabe\ text f{BPPPPD} $) 。 相反, 我们转向一个不同的目标: 当所有玩家都使用时, orroralalal comal way 的方法都遵循一种平衡。 我们的主要结果是“ salal liver liver ladeal lade lave, lad.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Multi-armed Bandit Learning on a Graph
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月12日
Arxiv
0+阅读 · 2022年12月11日
Arxiv
94+阅读 · 2021年5月17日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员