Mobile robots in unknown cluttered environments with irregularly shaped obstacles often face energy and communication challenges which directly affect their ability to explore these environments. In this paper, we introduce a novel deep learning architecture, Confidence-Aware Contrastive Conditional Consistency Model (4CNet), for robot map prediction during decentralized, resource-limited multi-robot exploration. 4CNet uniquely incorporates: 1) a conditional consistency model for map prediction in unstructured unknown regions, 2) a contrastive map-trajectory pretraining framework for a trajectory encoder that extracts spatial information from the trajectories of nearby robots during map prediction, and 3) a confidence network to measure the uncertainty of map prediction for effective exploration under resource constraints. We incorporate 4CNet within our proposed robot exploration with map prediction architecture, 4CNet-E. We then conduct extensive comparison studies with 4CNet-E and state-of-the-art heuristic and learning methods to investigate both map prediction and exploration performance in environments consisting of irregularly shaped obstacles and uneven terrain. Results showed that 4CNet-E obtained statistically significant higher prediction accuracy and area coverage with varying environment sizes, number of robots, energy budgets, and communication limitations when compared to database and learning-based methods. Hardware experiments were performed and validated the applicability and generalizability of 4CNet-E in both unstructured indoor and real natural outdoor environments.
翻译:暂无翻译