In this work we investigate the numerical identification of the diffusion coefficient in elliptic and parabolic problems using neural networks. The numerical scheme is based on the standard output least-squares formulation where the Galerkin finite element method (FEM) is employed to approximate the state and neural networks (NNs) act as a smoothness prior to approximate the unknown diffusion coefficient. A projection operation is applied to the NN approximation in order to preserve the physical box constraint on the unknown coefficient. The hybrid approach enjoys both rigorous mathematical foundation of the FEM and inductive bias / approximation properties of NNs. We derive \textsl{a priori} error estimates in the standard $L^2(\Omega)$ norm for the numerical reconstruction, under a positivity condition which can be verified for a large class of problem data. The error bounds depend explicitly on the noise level, regularization parameter and discretization parameters (e.g., spatial mesh size, time step size, and depth, upper bound and number of nonzero parameters of NNs). We also provide extensive numerical experiments, indicating that the hybrid method is very robust for large noise when compared with the pure FEM approximation.


翻译:在这项工作中,我们调查使用神经网络对椭圆和抛物体问题扩散系数的数值识别。数字方法基于标准输出最小方的配方,使用Galerkin 限量元素法(FEM)来接近国家和神经网络(NNS),在接近未知的传播系数之前是顺畅的。预测操作对NN近似值适用,以保持对未知系数的物理框限制。混合方法具有FEM的严格数学基础和NNW的进取偏度/近似值特性。我们从标准 $L2 (\\\ Omega) 标准中得出数值重建的最小输出偏差估计值,在可核实大类问题数据的假设条件下。错误的界限明确取决于噪音水平、规范参数和离散参数(例如空间网格大小、时间步骤大小和深度、上下限和非零参数的数目)。我们还进行了广泛的数字实验,表明混合方法在与FEM的纯度比较时,对于大型噪音来说是非常可靠的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员