We consider the planar dynamic convex hull problem. In the literature, solutions exist supporting the insertion and deletion of points in poly-logarithmic time and various queries on the convex hull of the current set of points in logarithmic time. If arbitrary insertion and deletion of points are allowed, constant time updates and fast queries are known to be impossible. This paper considers two restricted cases where worst-case constant time updates and logarithmic time queries are possible. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case assumes that the points in the deque constitute a simple path. Note that the monotone case is a special case of the simple path case. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in $O(\log n)$ time, where $n$ is the number of points in the current point set. The convex hull of the current point set can be reported in $O(h+\log n)$ time, where $h$ is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to $O(h)$, and queries on the convex hull are supported in $O(\log h)$ time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal. For a quick comparison, the previous best update bounds for the simple path problem were amortized $O(\log n)$ time by Friedman, Hershberger, and Snoeyink [SoCG 1989].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
26+阅读 · 2019年11月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
26+阅读 · 2019年11月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
10+阅读 · 2018年4月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员