With an increasing demand for robots, robotic grasping will has a more important role in future applications. This paper takes grasp stability prediction as the key technology for grasping and tries to solve the problem with time series data inputs including the force and pressure data. Widely applied to more fields to predict unstable grasping with time series data, algorithms can significantly promote the application of artificial intelligence in traditional industries. This research investigates models that combine short-time Fourier transform (STFT) and long short-term memory (LSTM) and then tested generalizability with dexterous hand and suction cup gripper. The experiments suggest good results for grasp stability prediction with the force data and the generalized results in the pressure data. Among the 4 models, (Data + STFT) & LSTM delivers the best performance. We plan to perform more work on grasp stability prediction, generalize the findings to different types of sensors, and apply the grasp stability prediction in more grasping use cases in real life.
翻译:随着对机器人的需求不断增加,机器人掌握将在未来应用中扮演更重要的角色。 本文将稳定预测作为掌握和试图通过时间序列数据输入(包括武力和压力数据)解决问题的关键技术。 广泛应用到更多的领域,以预测不稳定的掌握时间序列数据,算法可以极大地促进在传统行业应用人工智能。 本研究调查了将短期Fourier变换(STFT)和长期短期内存(LSTM)相结合的模型,然后用伸缩手和抽吸杯抓取器测试了通用性。 实验表明,用武力数据和压力数据的普遍结果来掌握稳定预测是一个很好的结果。 在4个模型中, (Data +STFT) & LSTM可以提供最佳的性能。 我们计划开展更多关于掌握稳定预测的工作,将调查结果推广到不同类型的传感器,并将掌握稳定性预测应用到更多在现实生活中使用的案例中。