With an increasing demand for robots, robotic grasping will has a more important role in future applications. This paper takes grasp stability prediction as the key technology for grasping and tries to solve the problem with time series data inputs including the force and pressure data. Widely applied to more fields to predict unstable grasping with time series data, algorithms can significantly promote the application of artificial intelligence in traditional industries. This research investigates models that combine short-time Fourier transform (STFT) and long short-term memory (LSTM) and then tested generalizability with dexterous hand and suction cup gripper. The experiments suggest good results for grasp stability prediction with the force data and the generalized results in the pressure data. Among the 4 models, (Data + STFT) & LSTM delivers the best performance. We plan to perform more work on grasp stability prediction, generalize the findings to different types of sensors, and apply the grasp stability prediction in more grasping use cases in real life.


翻译:随着对机器人的需求不断增加,机器人掌握将在未来应用中扮演更重要的角色。 本文将稳定预测作为掌握和试图通过时间序列数据输入(包括武力和压力数据)解决问题的关键技术。 广泛应用到更多的领域,以预测不稳定的掌握时间序列数据,算法可以极大地促进在传统行业应用人工智能。 本研究调查了将短期Fourier变换(STFT)和长期短期内存(LSTM)相结合的模型,然后用伸缩手和抽吸杯抓取器测试了通用性。 实验表明,用武力数据和压力数据的普遍结果来掌握稳定预测是一个很好的结果。 在4个模型中, (Data +STFT) & LSTM可以提供最佳的性能。 我们计划开展更多关于掌握稳定预测的工作,将调查结果推广到不同类型的传感器,并将掌握稳定性预测应用到更多在现实生活中使用的案例中。

0
下载
关闭预览

相关内容

长短期记忆网络(LSTM)是一种用于深度学习领域的人工回归神经网络(RNN)结构。与标准的前馈神经网络不同,LSTM具有反馈连接。它不仅可以处理单个数据点(如图像),还可以处理整个数据序列(如语音或视频)。例如,LSTM适用于未分段、连接的手写识别、语音识别、网络流量或IDSs(入侵检测系统)中的异常检测等任务。
专知会员服务
19+阅读 · 2020年9月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
3+阅读 · 2019年4月25日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年9月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
3+阅读 · 2019年4月25日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员