Aerial robots interacting with objects must perform precise, contact-rich maneuvers under uncertainty. In this paper, we study the problem of aerial ball juggling using a quadrotor equipped with a racket, a task that demands accurate timing, stable control, and continuous adaptation. We propose JuggleRL, the first reinforcement learning-based system for aerial juggling. It learns closed-loop policies in large-scale simulation using systematic calibration of quadrotor and ball dynamics to reduce the sim-to-real gap. The training incorporates reward shaping to encourage racket-centered hits and sustained juggling, as well as domain randomization over ball position and coefficient of restitution to enhance robustness and transferability. The learned policy outputs mid-level commands executed by a low-level controller and is deployed zero-shot on real hardware, where an enhanced perception module with a lightweight communication protocol reduces delays in high-frequency state estimation and ensures real-time control. Experiments show that JuggleRL achieves an average of $311$ hits over $10$ consecutive trials in the real world, with a maximum of $462$ hits observed, far exceeding a model-based baseline that reaches at most $14$ hits with an average of $3.1$. Moreover, the policy generalizes to unseen conditions, successfully juggling a lighter $5$ g ball with an average of $145.9$ hits. This work demonstrates that reinforcement learning can empower aerial robots with robust and stable control in dynamic interaction tasks.
翻译:暂无翻译