Spectrogram classification plays an important role in analyzing gravitational wave data. In this paper, we propose a framework to improve the classification performance by using Generative Adversarial Networks (GANs). As substantial efforts and expertise are required to annotate spectrograms, the number of training examples is very limited. However, it is well known that deep networks can perform well only when the sample size of the training set is sufficiently large. Furthermore, the imbalanced sample sizes in different classes can also hamper the performance. In order to tackle these problems, we propose a GAN-based data augmentation framework. While standard data augmentation methods for conventional images cannot be applied on spectrograms, we found that a variant of GANs, ProGAN, is capable of generating high-resolution spectrograms which are consistent with the quality of the high-resolution original images and provide a desirable diversity. We have validated our framework by classifying glitches in the {\it Gravity Spy} dataset with the GAN-generated spectrograms for training. We show that the proposed method can provide an alternative to transfer learning for the classification of spectrograms using deep networks, i.e. using a high-resolution GAN for data augmentation instead. Furthermore, fluctuations in classification performance with small sample sizes for training and evaluation can be greatly reduced. Using the trained network in our framework, we have also examined the spectrograms with label anomalies in {\it Gravity Spy}.


翻译:光谱分类在分析引力波数据方面发挥着重要作用。 在本文中, 我们提出一个框架, 通过使用 Genemental Aversarial Networks (GANs) 来改进分类性能。 由于对光谱图进行批注需要大量的努力和专门知识, 培训实例的数量非常有限。 但是, 众所周知, 深网络只有在培训组的抽样规模足够大的情况下才能运行良好。 此外, 不同类别中的不平衡样本大小也会妨碍性能。 为了解决这些问题, 我们提议了一个基于 GAN 的数据增强框架。 虽然常规图像的标准数据增强方法不能应用于光谱仪( GANs ) 。 我们发现, GANs 的变种( ProGAN ) 能够生成与高分辨率原始图像质量相一致的高分辨率光谱图, 并提供了适当的多样性。 我们通过对 重力重力 Spyv 数据设置的光谱集进行分类来验证我们的框架 。 我们显示, 拟议的方法可以提供一种替代方法, 用高分辨率的光谱图进行深度分析, 使用高分辨率网络 和高分辨率分析, 使用高分辨率分析 数据分类。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员