Online high-definition (HD) map construction plays an increasingly important role in scaling autonomous driving systems. Transformer-based methods have become prevalent in online HD map construction; however, existing approaches often neglect the inherent spatial and semantic relationships among map elements, which limits their accuracy and generalization. To address this, we propose RelMap, an end-to-end framework that enhances online map construction by incorporating spatial relations and semantic priors. We introduce a Class-aware Spatial Relation Prior, which explicitly encodes relative positional dependencies between map elements using a learnable class-aware relation encoder. Additionally, we propose a Mixture-of-Experts (MoE)-based Semantic Prior, which routes features to class-specific experts based on predicted class probabilities, refining instance feature decoding. Our method is compatible with both single-frame and temporal perception backbones, achieving state-of-the-art performance on both the nuScenes and Argoverse 2 datasets.
翻译:暂无翻译