Automated red blood cell (RBC) classification on blood smear images helps hematologists to analyze RBC lab results in a reduced time and cost. However, overlapping cells can cause incorrect predicted results, and so they have to be separated into multiple single RBCs before classifying. To classify multiple classes with deep learning, imbalance problems are common in medical imaging because normal samples are always higher than rare disease samples. This paper presents a new method to segment and classify RBCs from blood smear images, specifically to tackle cell overlapping and data imbalance problems. Focusing on overlapping cell separation, our segmentation process first estimates ellipses to represent RBCs. The method detects the concave points and then finds the ellipses using directed ellipse fitting. The accuracy from 20 blood smear images was 0.889. Classification requires balanced training datasets. However, some RBC types are rare. The imbalance ratio of this dataset was 34.538 for 12 RBC classes from 20,875 individual RBC samples. The use of machine learning for RBC classification with an imbalanced dataset is hence more challenging than many other applications. We analyzed techniques to deal with this problem. The best accuracy and F1-score were 0.921 and 0.8679, respectively, using EfficientNet-B1 with augmentation. Experimental results showed that the weight balancing technique with augmentation had the potential to deal with imbalance problems by improving the F1-score on minority classes, while data augmentation significantly improved the overall classification performance.


翻译:血液涂片图像的自动红血细胞(RBC)分类(RBC)在血液涂片图像上的自动红血细胞(RBC)分类有助于血液学家分析RBC实验室在时间和成本上减少的结果。然而,重叠细胞可以造成不正确的预测结果,因此在分类之前,必须将其分为多个单一的RBC。要对多个班进行深层学习,在医疗成像中,不平衡问题很常见,因为正常的样本总是高于罕见的疾病样本。本文介绍了将RBC从血液涂片中分类和分类的一种新的方法,具体是为了解决细胞重叠和数据不平衡问题。侧重于细胞分离,我们分解过程首先估计的是代表RBC的省略结果。这种方法可以探测混结点,然后发现使用定向的椭圆的剪贴图进行分类。20个血涂图的准确性为0.889,分类需要平衡的培训数据集的种类很少。该数据集的偏差比例为34.538,而来自20 875个RBC个人RBC样本的样本。使用机器对不平衡数据进行分类的分类,因此比其他许多应用程序更具挑战性。我们用这种方法来检测这些方法来检测和查找点点点点点点点点点点,然后找到使用精确点点点点点点点点点,我们用直点分析了使用这个方法来处理这个方法来处理这个方法,用0.8-B的精度,同时用0.8-B的精确度, 递增方法来处理这个方法处理这个方法分别的递增率。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月24日
A Survey on Data Augmentation for Text Classification
Arxiv
11+阅读 · 2020年8月3日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员