Although the self-supervised pre-training of transformer models has resulted in the revolutionizing of natural language processing (NLP) applications and the achievement of state-of-the-art results with regard to various benchmarks, this process is still vulnerable to small and imperceptible permutations originating from legitimate inputs. Intuitively, the representations should be similar in the feature space with subtle input permutations, while large variations occur with different meanings. This motivates us to investigate the learning of robust textual representation in a contrastive manner. However, it is non-trivial to obtain opposing semantic instances for textual samples. In this study, we propose a disentangled contrastive learning method that separately optimizes the uniformity and alignment of representations without negative sampling. Specifically, we introduce the concept of momentum representation consistency to align features and leverage power normalization while conforming the uniformity. Our experimental results for the NLP benchmarks demonstrate that our approach can obtain better results compared with the baselines, as well as achieve promising improvements with invariance tests and adversarial attacks. The code is available in https://github.com/zjunlp/DCL.


翻译:虽然由自我监督的变压器模型培训前的自我监督使自然语言处理(NLP)应用发生了革命性的变化,并取得了各种基准的最新结果,但这一进程仍然易受来自合法投入的微小和难以察觉的变异的影响,从直觉上看,在特征空间的表达方式应该相似,输入变化微妙,而差异很大,其含义不同。这促使我们以对比的方式调查对稳健的文本表达方式的学习情况。然而,为文本样本取得相反的语义学实例是非三重性的。在本研究中,我们提出了一个分解的对比学习方法,在不进行负面抽样的情况下分别优化表述的统一和一致。具体地说,我们引入了动力代表一致性的概念,以便在统一的同时调整特征和利用权力的正常化。我们关于NLP基准的实验结果表明,我们的方法可以比基线取得更好的结果,并且通过差异测试和对抗性攻击实现有希望的改进。该代码可在 https://githbub.com/zjuncrupp/LDC中查阅。

0
下载
关闭预览

相关内容

近期必读的六篇 ICML 2020【对比学习】相关论文
专知会员服务
56+阅读 · 2020年9月15日
近期必读的五篇KDD 2020【迁移学习 (TL) 】相关论文
专知会员服务
38+阅读 · 2020年8月25日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
14+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Top
微信扫码咨询专知VIP会员