Unsteady fluid systems are nonlinear high-dimensional dynamical systems that may exhibit multiple complex phenomena both in time and space. Reduced Order Modeling (ROM) of fluid flows has been an active research topic in the recent decade with the primary goal to decompose complex flows to a set of features most important for future state prediction and control, typically using a dimensionality reduction technique. In this work, a novel data-driven technique based on the power of deep neural networks for reduced order modeling of the unsteady fluid flows is introduced. An autoencoder network is used for nonlinear dimension reduction and feature extraction as an alternative for singular value decomposition (SVD). Then, the extracted features are used as an input for long short-term memory network (LSTM) to predict the velocity field at future time instances. The proposed autoencoder-LSTM method is compared with dynamic mode decomposition (DMD) as the data-driven base method. Moreover, an autoencoder-DMD algorithm is introduced for reduced order modeling, which uses the autoencoder network for dimensionality reduction rather than SVD rank truncation. Results show that the autoencoder-LSTM method is considerably capable of predicting the fluid flow evolution, where higher values for coefficient of determination $R^{2}$ are obtained using autoencoder-LSTM comparing to DMD.


翻译:不稳定的流体系统是非线性高维动态系统,在时间和空间上都可能出现多种复杂现象。减少流体流的顺序建模(ROM)是近十年来一个积极的研究课题,其主要目标是将复杂的流分解成对未来国家预测和控制最重要的一系列特征,通常使用一个维度减少技术。在这项工作中,采用了基于深神经网络的力量的新型数据驱动技术,以减少不稳定的流体流的顺序建模。引入了自动解码器网络,用于非线性规模的减少和特征提取,作为单值分解(SVD)的替代品。随后,将提取的特征用作长期短期内存网络(LSTM)的一个投入,用于预测未来时间的速度场。拟议的自动解析器-LSTM方法与数据驱动的动态模式解剖法(DMD)进行了比较。此外,引入了自动解码器-DMD算法,用于减少排序,使用自动解算器网络进行单值递减缩,而不是进行SVDLS的自动解算法。

0
下载
关闭预览

相关内容

【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
76+阅读 · 2020年2月3日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
86+阅读 · 2019年10月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Learning to Importance Sample in Primary Sample Space
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员