Accurate prediction of short-term OD Matrix (i.e. the distribution of passenger flows from various origins to destinations) is a crucial task in metro systems. It is highly challenging due to the constantly changing nature of spatiotemporal factors and the recent data collection problem. Recently, some deep learning-based models have been proposed for OD Matrix forecasting in ride-hailing or high way traffic scenarios. However, these models can not sufficiently capture the complex spatiotemporal correlations among stations in metro networks due to different prior knowledge and contextual settings. In this paper, we propose a model, namely Multi-Scale STATCN, to address OD metro matrix prediction. Specifically, it first proposes a data-driven method to solve the recent data collection problem. Then, it captures the dynamic spatial dependency in OD flows among different stations by a global self-attention mechanism. Three temporal convolutional networks are leveraged to capture three temporal trends in OD flow, i.e. recent trend, daily trend, weekly trend. Extensive experiments on three large-scale metro datasets demonstrate the superiority of our model over other competitors.
翻译:对短期OD矩阵(即从不同来源到不同目的地的旅客流动的分布)的准确预测是地铁系统的一项关键任务,由于时空因素的性质不断变化以及最近的数据收集问题,这是一项极具挑战性的任务;最近,提出了一些深层次的学习模型,用于在乘车或高速交通情况下对OD矩阵进行预测;然而,这些模型无法充分捕捉地铁网络各站点之间复杂的时空相关关系,因为先前的知识和背景环境不同。在本文件中,我们提出了一个模型,即多规模的STATCN,以解决OD气象矩阵预测问题。具体地说,它首先提出了一种以数据为驱动的方法来解决最近的数据收集问题。然后,它利用全球自留机制捕捉了不同站点之间对OD流动的动态空间依赖性。三个时变网络被用来捕捉OD流动的三种时间趋势,即最近的趋势、每日趋势、每周趋势。关于三个大型气象数据集的大规模实验表明我们模型优于其他竞争者。