Speech Emotion Recognition (SER) is becoming a key role in global business today to improve service efficiency, like call center services. Recent SERs were based on a deep learning approach. However, the efficiency of deep learning depends on the number of layers, i.e., the deeper layers, the higher efficiency. On the other hand, the deeper layers are causes of a vanishing gradient problem, a low learning rate, and high time-consuming. Therefore, this paper proposed a redesign of existing local feature learning block (LFLB). The new design is called a deep residual local feature learning block (DeepResLFLB). DeepResLFLB consists of three cascade blocks: LFLB, residual local feature learning block (ResLFLB), and multilayer perceptron (MLP). LFLB is built for learning local correlations along with extracting hierarchical correlations; DeepResLFLB can take advantage of repeatedly learning to explain more detail in deeper layers using residual learning for solving vanishing gradient and reducing overfitting; and MLP is adopted to find the relationship of learning and discover probability for predicted speech emotions and gender types. Based on two available published datasets: EMODB and RAVDESS, the proposed DeepResLFLB can significantly improve performance when evaluated by standard metrics: accuracy, precision, recall, and F1-score.


翻译:在当今全球商业中,情感言语认知(SER)正在成为提高服务效率(比如呼叫中心服务)的关键角色。最近的SER(SER)正在成为全球商务中提高服务效率(比如呼叫中心服务)的关键角色。最近的SER(SER)是建立在深层学习方法基础上的。然而,深层学习的效率取决于层数,即深层,即更深层,更高的效率。另一方面,深层层是渐渐消失的梯度问题、低学习率和高耗时的原因。因此,本文件建议重新设计现有的本地地物学习区块(LFLB),新设计称为“深残余本地地物学习区块 ” (DEepResLLLB) 。深层ResLLLLB由三个级块块块组成:LFLB、剩余本地地物学习区块学习区块(ReslLB) 和多层/ceptron(MLP) 。LFB是用来学习与分层相关关系的原因。深层LFLB(LB) 和深层数据库(根据两种可评估的精确性数据,可以大幅改进:EVDB-DF-LS-LS的精确性评估:EDF-LS)1号。

0
下载
关闭预览

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
20+阅读 · 2020年6月8日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员