Aging infrastructure portfolios pose a critical resource allocation challenge: deciding which structures require intervention and which can safely remain in service. Structural assessments must balance the trade-off between cheaper, conservative analysis methods and accurate but costly simulations that do not scale portfolio-wide. We propose Bayesian neural network (BNN) surrogates for rapid structural pre-assessment of worldwide common bridge types, such as reinforced concrete frame bridges. Trained on a large-scale database of non-linear finite element analyses generated via a parametric pipeline and developed based on the Swiss Federal Railway's bridge portfolio, the models accurately and efficiently estimate high-fidelity structural analysis results by predicting code compliance factors with calibrated epistemic uncertainty. Our BNN surrogate enables fast, uncertainty-aware triage: flagging likely critical structures and providing guidance where refined analysis is pertinent. We demonstrate the framework's effectiveness in a real-world case study of a railway underpass, showing its potential to significantly reduce costs and emissions by avoiding unnecessary analyses and physical interventions across entire infrastructure portfolios.
翻译:暂无翻译