Tomography is a central tool in medical applications, allowing doctors to investigate patients' interior features. The Radon transform (in two dimensions) is commonly used to model the measurement process in parallel-beam CT. Suitable discretization of the Radon transform and its adjoint (called the backprojection) is crucial. The most commonly used discretization approach combines what we refer to as the ray-driven Radon transform with what we refer to as the pixel-driven backprojection, as anecdotal reports describe these as showing the best approximation performance. However, there is little rigorous understanding of induced approximation errors. These methods involve three discretization parameters: the spatial-, detector-, and angular resolutions. Most commonly, balanced resolutions are used, i.e., the same (or similar) spatial- and detector resolutions are employed. We present an interpretation of ray- and pixel-driven discretizations as `convolutional methods', a special class of finite-rank operators. This allows for a structured analysis that can explain observed behavior. In particular, we prove convergence in the strong operator topology of the ray-driven Radon transform and the pixel-driven backprojection under balanced resolutions, thus theoretically justifying this approach. In particular, with high enough resolutions one can approximate the Radon transform arbitrarily well. Numerical experiments corroborate these theoretical findings.
翻译:暂无翻译