Text-to-SQL is a crucial task toward developing methods for understanding natural language by computers. Recent neural approaches deliver excellent performance; however, models that are difficult to interpret inhibit future developments. Hence, this study aims to provide a better approach toward the interpretation of neural models. We hypothesize that the internal behavior of models at hand becomes much easier to analyze if we identify the detailed performance of schema linking simultaneously as the additional information of the text-to-SQL performance. We provide the ground-truth annotation of schema linking information onto the Spider dataset. We demonstrate the usefulness of the annotated data and how to analyze the current state-of-the-art neural models.
翻译:文本到 SQL 是开发计算机理解自然语言的方法的关键任务。 最近的神经方法提供了极好的性能; 但是, 很难解释未来发展的模型。 因此, 本研究旨在为神经模型的解释提供更好的方法。 我们假设,如果我们同时确定与文本到SQL性能的附加信息同时连接的系统模型的详细性能,那么,手头模型的内部行为就会更容易分析。 我们提供了将信息与蜘蛛数据集连接起来的系统模型的地面真实性注释。 我们展示了附加说明的数据的有用性以及如何分析当前最先进的神经模型。