The observed sequence variation at a locus informs about the evolutionary history of the sample and past population size dynamics. The Kingman coalescent is used in a generative model of molecular sequence variation to infer evolutionary parameters. However, it is well understood that inference under this model does not scale well with sample size. Here, we build on recent work based on a lower resolution coalescent process, the Tajima coalescent, to model longitudinal samples. While the Kingman coalescent models the ancestry of labeled individuals, the heterochronous Tajima coalescent models the ancestry of individuals labeled by their sampling time. We propose a new inference scheme for the reconstruction of effective population size trajectories based on this model with the potential to improve computational efficiency. Modeling of longitudinal samples is necessary for applications (e.g. ancient DNA and RNA from rapidly evolving pathogens like viruses) and statistically desirable (variance reduction and parameter identifiability). We propose an efficient algorithm to calculate the likelihood and employ a Bayesian nonparametric procedure to infer the population size trajectory. We provide a new MCMC sampler to explore the space of heterochronous Tajima's genealogies and model parameters. We compare our procedure with state-of-the-art methodologies in simulations and applications.
翻译:中心观测到的序列变异会告知样本和过去人口规模动态的进化史。Kingman 月亮用于分子序列变异的基因模型,以推断进化参数。然而,人们清楚地认识到,根据这一模型的推论与样本大小不相称。这里,我们以最近基于低分辨率的日光进程、田间荧光(Tajima 荧光)和长距离样本模型的工作为基础,建模长距离样本。国王的月亮模型是贴有标签的个人的祖先,而异化的Tajima 月亮模型则是以其取样时间为标签的个人的祖先。我们提出了一种新的推断方法,以重建基于这一模型的有效人口规模轨迹,从而有可能提高计算效率。我们有必要根据远度样本建模应用(例如古代DNA和RNA,来自迅速演变的病毒等病原体)和统计上可取的(变异性和参数可辨度模型的可辨度)。我们建议一种有效的算法,用以计算和采用巴伊非对等程序来推算人口规模轨迹。我们提供了一种新的MMC取样和基因模拟方法。我们进行新的空间模拟的系统。