Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification to computing expected values of quantities of interest (QoIs). Multilevel Monte Carlo (MLMC) methods significantly reduce the computational cost by distributing the sampling across a hierarchy of discretizations and allocating most samples to the coarser grids. For time dependent problems, spatial coarsening typically entails an increased time-step. Geometric constraints, however, may impede uniform coarsening thereby forcing some elements to remain small across all levels. If explicit time-stepping is used, the time-step will then be dictated by the smallest element on each level for numerical stability. Hence, the increasingly stringent CFL condition on the time-step on coarser levels significantly reduces the advantages of the multilevel approach. By adapting the time-step to the locally refined elements on each level, local time-stepping (LTS) methods permit to restore the efficiency of MLMC methods even in the presence of complex geometry without sacrificing the explicitness and inherent parallelism.


翻译:蒙特卡洛方法由于其稳健性、效率和非侵扰性,很可能是计算预期利益量值的不确定性量化中最受欢迎的方法。多层次的蒙特卡洛(MLMC)方法通过将抽样分布在分解的层次上,并将大多数样本分到粗粗格网,大大减少计算成本。对于时间依赖问题,空间粗化通常需要增加时间步骤。但是,几何限制可能阻碍统一粗化,从而迫使某些要素在各个级别上保持小块。如果使用明确的时间步骤,那么每个级别上的时间步骤将由最小的元素决定,以达到数字稳定性。因此,在粗略水平上越来越严格的CFL条件大大降低了多层次方法的优势。通过调整时间步骤,使每个级别上的当地精细化要素,地方时间步骤方法允许恢复MLMC方法的效率,即使存在复杂的几何方法,同时又不牺牲明确性和固有的平行性。

0
下载
关闭预览

相关内容

【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
专知会员服务
32+阅读 · 2021年2月21日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员