As an essential component of many mission-critical equipment, mechanical bearings need to be monitored to identify any traces of abnormal conditions. Most of the latest data-driven methods applied to bearing anomaly detection are trained using a large amount of fault data collected a priori. However, in many practical applications, it may be unsafe and time-consuming to collect enough data samples for each fault category, which brings challenges to training a robust classifier. This paper proposes a few-shot learning framework for bearing anomaly detection based on model-agnostic meta-learning (MAML), which aims to train an effective fault classifier using very limited data. In addition, it can use training data and learn to more effectively identify new fault conditions. A case study on the generalization of new artificial faults shows that this method can achieve up to 25\% overall accuracy when compared to a benchmark study based on the Siamese network. Finally, the generalization ability of MAML is also competitive when compared with some state-of-the-art few-shot learning methods in terms of identifying realistic bearing damages using a sufficient amount of training data from artificial damages.


翻译:作为许多关键任务设备的基本组成部分,需要监测机械轴承,以发现异常状况的任何痕迹。大多数用于异常检测的最新数据驱动方法都是使用事先收集的大量故障数据进行培训的。然而,在许多实际应用中,收集每个故障类别足够的数据样本可能不安全而且耗费时间,这对培训一个强有力的分类员提出了挑战。本文件提议了一个以模型 -- -- 遗传元学为基础,用微小的学习方法来测出异常现象,目的是用非常有限的数据培训一个有效的故障分类员。此外,它可以利用培训数据并学习更有效地查明新的故障条件。关于新的人为故障的概括化案例研究表明,与以西亚姆斯网络为基础的基准研究相比,这种方法可以达到25 ⁇ 的总体准确度。最后,在使用足够数量的人工损害培训数据确定实际承受损害方面,MAML的通用能力与一些最先进的学习方法相比,也具有竞争力。

2
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
26+阅读 · 2020年2月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
相关论文
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
26+阅读 · 2020年2月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员