There is a strong interest in finding challenging instances of NP-hard problems, from the perspective of showing quantum advantage. Due to the limits of near-term NISQ devices, it is moreover useful if these instances are small. In this work, we identify two graph families ($|V|<1000$) on which the Goemans-Williamson algorithm for approximating the Max-Cut achieves at most a 0.912-approximation. We further show that, in comparison, a recent quantum algorithm, Quantum Approximate Optimization Algorithm (depth $p=1$), is a 0.592-approximation on Karloff instances in the limit ($n \to \infty$), and is at best a $0.894$-approximation on a family of strongly-regular graphs. We further explore construction of challenging instances computationally by perturbing edge weights, which may be of independent interest, and include these in the CI-QuBe github repository.
翻译:暂无翻译