We are recently witnessing an increased adoption of microservice architectures by the industry for achieving scalability by functional decomposition, fault-tolerance by deployment of small and independent services, and polyglot persistence by the adoption of different database technologies specific to the needs of each service. Despite the accelerating industrial adoption and the extensive research on microservices, there is a lack of thorough investigation on the state of the practice and the major challenges faced by practitioners with regard to data management. To bridge this gap, this paper presents a detailed investigation of data management in microservices. Our exploratory study is based on the following methodology: we conducted a systematic literature review of articles reporting the adoption of microservices in industry, where more than 300 articles were filtered down to 11 representative studies; we analyzed a set of 9 popular open-source microservice-based applications, selected out of more than 20 open-source projects; furthermore, to strengthen our evidence, we conducted an online survey that we then used to cross-validate the findings of the previous steps with the perceptions and experiences of over 120 practitioners and researchers. Through this process, we were able to categorize the state of practice and reveal several principled challenges that cannot be solved by software engineering practices, but rather need system-level support to alleviate the burden of practitioners. Based on the observations we also identified a series of research directions to achieve this goal. Fundamentally, novel database systems and data management tools that support isolation for microservices, which include fault isolation, performance isolation, data ownership, and independent schema evolution across microservices must be built to address the needs of this growing architectural style.

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem

Predictive business process monitoring is concerned with the prediction how a running process instance will unfold up to its completion at runtime. Most of the proposed approaches rely on a wide number of different machine learning (ML) techniques. In the last years numerous comparative studies, reviews, and benchmarks of such approaches where published and revealed that they can be successfully applied for different prediction targets. ML techniques require a qualitatively and quantitatively sufficient data set. However, there are many situations in business process management (BPM) where only a quantitatively insufficient data set is available. The problem of insufficient data in the context of BPM is still neglected. Hence, none of the comparative studies or benchmarks investigates the performance of predictive business process monitoring techniques in environments with small data sets. In this paper an evaluation framework for comparing existing approaches with regard to their suitability for small data sets is developed and exemplarily applied to state-of-the-art approaches in predictive business process monitoring.

0
0
下载
预览

As Engineering Education Research (EER) develops as a discipline it is necessary for EER scholars to contribute to the development of learning theory rather than simply being informed by it. It has been suggested that to do this effectively will require partnerships between Engineering scholars and psychologists, education researchers, including other social scientists. The formation of such partnerships is particularly important when considering the introduction of business-related skills into engineering curriculum designed to prepare 21st Century Engineering Students for workplace challenges. In order to encourage scholars beyond Engineering to engage with EER, it is necessary to provide an introduction to the complexities of EER. With this aim in mind, this paper provides an outline review of what is considered rigorous research from an EER perspective as well as highlighting some of the core methodological traditions of EER. The paper aims to facilitate further discussion between EER scholars and researchers from other disciplines, ultimately leading to future collaboration on innovative and rigorous EER.

0
0
下载
预览

Modern Code Review (MCR) is a standard in all kinds of organizations that develop software. MCR pays for itself through perceived and proven benefits in quality assurance and knowledge transfer. However, the time invest in MCR is generally substantial. The goal of this thesis is to boost the efficiency of MCR by developing AI techniques that can partially replace or assist human reviewers. The envisioned techniques distinguish from existing MCR-related AI models in that we interpret these challenges as graph-learning problems. This should allow us to use state-of-science algorithms from that domain to learn coding and reviewing standards directly from existing projects. The required training data will be mined from online repositories and the experiments will be designed to use standard, quantitative evaluation metrics. This research proposal defines the motivation, research-questions, and solution components for the thesis, and gives an overview of the relevant related work.

0
0
下载
预览

The long lifetime and the evolving nature of industrial products make them subject to technical debt at different levels. Despite multiple years of research on technical debt management, our industrial experience shows that introducing systematic technical debt management in a large-scale company is very challenging. To identify the challenges, we provide a conceptual framework for holistic debt management across the product development value stream, which takes multiple categories of debt and their interplays into account.We use this framework to identify multiple challenges that are still open to be explored by the research community. Due to the practical nature of technical debt management, we believe this paper can guide the research community on the needs of industry for the effective application of technical debt management in practice.

0
0
下载
预览

Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and reconfiguration. We review noteworthy past research findings, outline the similarities and differences between early ('00-'10) and modern ('11-'18) streaming systems, and discuss recent trends and open problems.

0
9
下载
预览

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

0
45
下载
预览

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

0
63
下载
预览

In recent years with the rise of Cloud Computing (CC), many companies providing services in the cloud, are empowered a new series of services to their catalog, such as data mining (DM) and data processing, taking advantage of the vast computing resources available to them. Different service definition proposals have been proposed to address the problem of describing services in CC in a comprehensive way. Bearing in mind that each provider has its own definition of the logic of its services, and specifically of DM services, it should be pointed out that the possibility of describing services in a flexible way between providers is fundamental in order to maintain the usability and portability of this type of CC services. The use of semantic technologies based on the proposal offered by Linked Data (LD) for the definition of services, allows the design and modelling of DM services, achieving a high degree of interoperability. In this article a schema for the definition of DM services on CC is presented, in addition are considered all key aspects of service in CC, such as prices, interfaces, Software Level Agreement, instances or workflow of experimentation, among others. The proposal presented is based on LD, so that it reuses other schemata obtaining a best definition of the service. For the validation of the schema, a series of DM services have been created where some of the best known algorithms such as \textit{Random Forest} or \textit{KMeans} are modeled as services.

0
3
下载
预览

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

0
7
下载
预览

A recent research trend has emerged to identify developers' emotions, by applying sentiment analysis to the content of communication traces left in collaborative development environments. Trying to overcome the limitations posed by using off-the-shelf sentiment analysis tools, researchers recently started to develop their own tools for the software engineering domain. In this paper, we report a benchmark study to assess the performance and reliability of three sentiment analysis tools specifically customized for software engineering. Furthermore, we offer a reflection on the open challenges, as they emerge from a qualitative analysis of misclassified texts.

0
3
下载
预览
小贴士
相关论文
Martin Käppel,Stefan Jablonski,Stefan Schönig
0+阅读 · 4月20日
David Reynolds,Nicholas Dacre
0+阅读 · 4月18日
Robert Heumüller
0+阅读 · 4月16日
A Survey on the Evolution of Stream Processing Systems
Marios Fragkoulis,Paris Carbone,Vasiliki Kalavri,Asterios Katsifodimos
9+阅读 · 2020年8月3日
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou,Ganqu Cui,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Maosong Sun
63+阅读 · 2018年12月20日
Semantics of Data Mining Services in Cloud Computing
Manuel Parra-Royon,Ghislain Atemezing,J. M. Benítez
3+阅读 · 2018年10月5日
Markus Schedl,Hamed Zamani,Ching-Wei Chen,Yashar Deldjoo,Mehdi Elahi
7+阅读 · 2018年3月21日
Nicole Novielli,Daniela Girardi,Filippo Lanubile
3+阅读 · 2018年3月17日
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
47+阅读 · 2020年5月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
31+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
8+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
8+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
6+阅读 · 2017年9月24日
Top