Modern 3D-GANs synthesize geometry and texture by training on large-scale datasets with a consistent structure. Training such models on stylized, artistic data, with often unknown, highly variable geometry, and camera information has not yet been shown possible. Can we train a 3D GAN on such artistic data, while maintaining multi-view consistency and texture quality? To this end, we propose an adaptation framework, where the source domain is a pre-trained 3D-GAN, while the target domain is a 2D-GAN trained on artistic datasets. We then distill the knowledge from a 2D generator to the source 3D generator. To do that, we first propose an optimization-based method to align the distributions of camera parameters across domains. Second, we propose regularizations necessary to learn high-quality texture, while avoiding degenerate geometric solutions, such as flat shapes. Third, we show a deformation-based technique for modeling exaggerated geometry of artistic domains, enabling -- as a byproduct -- personalized geometric editing. Finally, we propose a novel inversion method for 3D-GANs linking the latent spaces of the source and the target domains. Our contributions -- for the first time -- allow for the generation, editing, and animation of personalized artistic 3D avatars on artistic datasets.


翻译:现代3D-GANs通过在大规模数据集上训练具有一致结构的模型来合成几何和纹理。然而,使用艺术风格数据进行训练,由于其通常具有未知的高度可变几何和摄像机信息,尚未能够达成。我们是否可以对这种艺术数据进行3D GAN训练,同时保持多视角的一致性和纹理质量?为此,我们提出了一种适应性框架,源域是预训练的3D-GAN,而目标域是在艺术数据集上训练的2D-GAN。然后,我们将2D生成器的知识提炼到源3D生成器中。为此,我们首先提出了一种基于优化的方法,以对齐跨领域的摄像机参数分布。其次,我们提出了必要的正则化,以学习高质量的纹理,同时避免退化的几何解决方案,例如平面形状。第三,我们展示了一种基于变形的技术,用于建模艺术领域的夸张几何,从而实现个性化的几何编辑。最后,我们提出了一种新的3D-GAN反演方法,将源域和目标域的潜空间链接起来。我们的贡献意味着首次可以在艺术数据集上生成、编辑和动画化个性化的艺术3D化身。

0
下载
关闭预览

相关内容

艺术迄今依旧没有公认的定义,目前广义的艺术乃是由具有智能思考能力的动物,透过各种形式及工具以表达其情感与意识,因而产生的结果。艺术不只存在于人类社会中,也存在于其他相对高等的动物。
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员