Given an unknown $n \times n$ matrix $A$ having non-negative entries, the \emph{inner product} (IP) oracle takes as inputs a specified row (or a column) of $A$ and a vector $v \in \mathbb{R}^{n}$, and returns their inner product. A derivative of IP is the induced degree query in an unknown graph $G=(V(G), E(G))$ that takes a vertex $u \in V(G)$ and a subset $S \subseteq V(G)$ as input and reports the number of neighbors of $u$ that are present in $S$. The goal of this paper is to understand the strength of the inner product oracle. Our results in that direction are as follows: (I) IP oracle can solve bilinear form estimation, i.e., estimate the value of ${\bf x}^{T}A\bf{y}$ given two vectors ${\bf x},\, {\bf y} \in \mathbb{R}^{n}$ with non-negative entries and can sample almost uniformly entries of a matrix with non-negative entries; (ii) We tackle for the first time weighted edge estimation and weighted sampling of edges that follow as an application to the bilinear form estimation and almost uniform sampling problems, respectively; (iii) induced degree query, a derivative of IP can solve edge estimation and an almost uniform edge sampling in induced subgraphs. To the best of our knowledge, these are the first set of Oracle-based query complexity results for induced subgraphs. We show that IP/induced degree queries over the whole graph can simulate local queries in any induced subgraph; (iv) Apart from the above, we also show that IP can solve several problems related to matrix, like testing if the matrix is diagonal, symmetric, doubly stochastic, etc.
翻译:以未知的 $\ 美元基质 $A (美元) 为未知的 美元基质 $A (美元) 美元基质 具有非负值条目, \ emph{ in meductures} (IP) 或acle 将指定一行( 或一列) $A$ 和一矢量 $ 美元 和 a 矢量 美元 返回内产值。 IP 的衍生物是未知的图形$G=( V( G), E( G) 美元, 需要一个顶端 $u in V( G) (G) 和 子项 美元S\ subseqe V (G) 作为输入输入输入输入 $( 美元基数) 。 本文的目标是了解内产值的强度 或数个矢量 。 IP 或 能够解决双线形估测, 即估算 $ IP x%T} A\\ 直径 直径 直径 和 直径 基质估测值 和 以两个矢量基质基质的值 直位值 直位值 。 (webxxxx) 第一次解 、\\\ 直判、\ 直判、\ 直判、 近 直判、 近 直径 直径 近 直判、 和直判、 直径 近 近 直 和直判、 直径 直径 直径 和直 直径 直径 直径 直径 直径 直径 直径 直径 直径 直 直 直 直 直 直径、 直径 、 和直 直 直方 直方 直方 和直方 直方 直方 直 直 直 直方 、 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方 直方