It is often unnoticed that the predominant way to use collocation methods is fundamentally flawed when applied to optimal control in robotics. Such methods assume that the system dynamics is given by a first order ODE, whereas robots are often governed by a second or higher order ODE involving configuration variables and their time derivatives. To apply a collocation method, therefore, the usual practice is to resort to the well known procedure of casting an M th order ODE into M first order ones. This manipulation, which in the continuous domain is perfectly valid, leads to inconsistencies when the problem is discretized. Since the configuration variables and their time derivatives are approximated with polynomials of the same degree, their differential dependencies cannot be fulfilled, and the actual dynamics is not satisfied, not even at the collocation points. This paper draws attention to this problem, and develops improved versions of the trapezoidal and Hermite-Simpson collocation methods that do not present these inconsistencies. In many cases, the new methods reduce the dynamic transcription error in one order of magnitude, or even more, without noticeably increasing the cost of computing the solutions.


翻译:在机器人最佳控制方面,使用合用方法的主要方法往往被人们所忽略,在应用机器人最佳控制时,使用合用方法的主要方法基本上有缺陷。这种方法假定系统动态由一阶数的ODE给定,而机器人则往往由涉及配置变量及其时间衍生物的第二阶或更高阶数的ODE管理。因此,采用合用方法,通常的做法是采用众所周知的程序,将M阶数的ODE投入M阶数的第一阶数。在连续域中,这种操纵完全有效,在问题分解时会导致不一致。由于配置变量及其时间衍生物与同一程度的多元数相近,因此无法满足它们的不同依赖性,而且实际的动态不满足,甚至在合用点也不满足。本文提请注意这一问题,并开发了陷阱式和Hermite-Simpson合用的方法的改良版本,这些方法没有表现出这些不一致性。在许多情况下,新的方法将动态抄录错误降低一个层次,甚至更多程度,而不会明显增加计算解决方案的成本。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
82+阅读 · 2022年8月2日
Arxiv
91+阅读 · 2020年2月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员