We consider Bayesian analysis on high-dimensional spheres with angular central Gaussian priors. These priors model antipodally symmetric directional data, are easily defined in Hilbert spaces and occur, for instance, in Bayesian binary classification and level set inversion. In this paper we derive efficient Markov chain Monte Carlo methods for approximate sampling of posteriors with respect to these priors. Our approaches rely on lifting the sampling problem to the ambient Hilbert space and exploit existing dimension-independent samplers in linear spaces. By a push-forward Markov kernel construction we then obtain Markov chains on the sphere, which inherit reversibility and spectral gap properties from samplers in linear spaces. Moreover, our proposed algorithms show dimension-independent efficiency in numerical experiments.
翻译:我们考虑具有角度中心高斯先验的高维球面上的贝叶斯分析。这些先验用于建模反极点对称方向数据,在希尔伯特空间中很容易定义,在贝叶斯二分类和水平集反演中出现。在本文中,我们推导出了适用于这些先验的后验的近似采样的高效马尔可夫链蒙特卡罗方法。我们的方法依赖于将采样问题提升到环境希尔伯特空间,并利用现有的线性空间维数独立采样器。通过前推马尔可夫内核构造,我们得到了球面上的马尔可夫链,该方法从线性空间采样器继承了可逆性和谱间隙特性。此外,我们提出的算法在数值实验中表现出维数独立的效率。