Search-based techniques have shown great success in motion planning problems such as robotic navigation by discretizing the state space and precomputing motion primitives. However in domains with complex dynamic constraints, constructing motion primitives in a discretized state space is non-trivial. This requires operating in continuous space which can be challenging for search-based planners as they can get stuck in local minima regions. Previous work on planning in continuous spaces introduced soft duplicate detection which requires search to compute the duplicity of a state with respect to previously seen states to avoid exploring states that are likely to be duplicates, especially in local minima regions. They propose a simple metric utilizing the euclidean distance between states, and proximity to obstacles to compute the duplicity. In this paper, we improve upon this metric by introducing a kinodynamically informed metric, subtree overlap, between two states as the similarity between their successors that can be reached within a fixed time horizon using kinodynamic motion primitives. This captures the intuition that, due to robot dynamics, duplicate states can be far in euclidean distance and result in very similar successor states, while non-duplicate states can be close and result in widely different successors.
翻译:以搜索为基础的技术在诸如机器人导航等动态规划问题上表现出了巨大的成功。 通过将国家空间和预先计算的运动原始体分离,机器人导航在移动性规划问题上表现出了巨大的成功。 但是,在具有复杂动态限制的领域,在离散状态空间建造运动原始体是非三角的。这要求在连续空间运行,对搜索型规划者来说具有挑战性,因为他们可以被困在当地微型区域。 以往关于连续空间规划的工作引入了软性重复检测,需要对先前所看到的国家进行搜索,以计算一个国家与先前所看到的国家的共性,从而避免探索可能重复的国家,特别是在当地的微型地区。它们提出了一个简单的衡量标准,利用各州之间的euclidean距离,以及接近于计算双曲线的障碍。在本文中,我们改进了这一衡量标准,引入了一种动态性知情的测量,即两个州之间的子树重叠,类似于其继承者之间在固定的时间范围内使用亲动力动力运动原始体可以达到的相似性测测测测测度。这反映了一种直觉,由于机器人的动态,重复性状态可以远远处于eclidededededead,特别是在远的距离上,并且在非常相似的后继国家可以产生类似的结果。