We present a product formula for the initial parts of the sparse resultant associated to an arbitrary family of supports, generalising a previous result by Sturmfels. This allows to compute the homogeneities and degrees of the sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain a similar product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated to a mixed subdivision of a polytope. Applying these results, we prove that the sparse resultant can be computed as the quotient of the determinant of such a square matrix by a certain principal minor, under suitable hypothesis. This generalises the classical Macaulay formula for the homogeneous resultant, and confirms a conjecture of Canny and Emiris.
翻译:我们为与任意的赡养家庭有关的稀少结果的初始部分提出了一个产品公式,概括了Sturmfels的先前结果,这样可以用较小的支持来计算稀少结果的同质和程度,并对Laurent 多元赡养体系进行评估。我们为Sylvester类型广场矩阵主要未成年人的一些初始部分获得了类似的产品公式,这与一个混合的多功能小块有关。运用这些结果,我们证明稀少的结果可以作为某一主要未成年人在适当假设下计算这种方形矩阵的决定因素的商数。这概括了典型澳门公式的同质结果,并证实了Canny和Emiris的推测。