Due to the sparsity and irregularity of the point cloud data, methods that directly consume points have become popular. Among all point-based models, graph convolutional networks (GCN) lead to notable performance by fully preserving the data granularity and exploiting point interrelation. However, point-based networks spend a significant amount of time on data structuring (e.g., Farthest Point Sampling (FPS) and neighbor points querying), which limit the speed and scalability. In this paper, we present a method, named Grid-GCN, for fast and scalable point cloud learning. Grid-GCN uses a novel data structuring strategy, Coverage-Aware Grid Query (CAGQ). By leveraging the efficiency of grid space, CAGQ improves spatial coverage while reducing the theoretical time complexity. Compared with popular sampling methods such as Farthest Point Sampling (FPS) and Ball Query, CAGQ achieves up to 50X speed-up. With a Grid Context Aggregation (GCA) module, Grid-GCN achieves state-of-the-art performance on major point cloud classification and segmentation benchmarks with significantly faster runtime than previous studies. Remarkably, Grid-GCN achieves the inference speed of 50fps on ScanNet using 81920 points per scene as input.


翻译:由于点云数据的广度和不规则性,直接消耗点的方法变得十分流行。在所有点基模型中,图变网络(GCN)通过充分保存数据颗粒度和利用点的相互关系而取得显著的绩效。然而,基于点的网络在数据结构(例如,远点抽样和邻接点查询)上花费了大量时间,限制了速度和可缩放性。在本文中,我们提出了一个名为Grid-GCN的快速和可缩放点云学习方法。Grid-GCN采用新的数据结构战略,即覆盖-软件网格查询(CAGQ)。通过利用电网空间的效率,CAGQ改进了空间覆盖,同时降低了理论复杂性。与流行的取样方法相比,如Farthest点抽样和Ball Query, CAGQ达到高达50x的速度。在Grid Clogation(GCA)模块中,GGCN网络网络使用新的数据结构化战略,即覆盖软件网-软件网格网格网格网格网网网网格网格网(Query (CAGQQ) 通过利用前点的云路速度大大加快进行50GSlod-Creal-Creal-Syal-reax-Syal-regl) 的升级,在前点上实现了速度上,利用了50点的云端点的云端点,实现了速度研究,在达到了50-cal-S-S-S-S-S-S-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-s-cal-cal-cal-cal-cal-cal-s-s-s-sal-sal-cal-cal-cal-cal-cal-cal-cal-cal-sal-cal-sal-sal-lal-sal-sal-lal-s-lal-lal-lal-lal-l-lal-lal-lal-lal-lal-Sal-Sal-sal-lal-lal-lal-lal-lal-lal-lal

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
专知会员服务
107+阅读 · 2020年12月21日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员