We focus on the task of goal-oriented grasping, in which a robot is supposed to grasp a pre-assigned goal object in clutter and needs some pre-grasp actions such as pushes to enable stable grasps. However, in this task, the robot gets positive rewards from environment only when successfully grasping the goal object. Besides, joint pushing and grasping elongates the action sequence, compounding the problem of reward delay. Thus, sample inefficiency remains a main challenge in this task. In this paper, a goal-conditioned hierarchical reinforcement learning formulation with high sample efficiency is proposed to learn a push-grasping policy for grasping a specific object in clutter. In our work, sample efficiency is improved by two means. First, we use a goal-conditioned mechanism by goal relabeling to enrich the replay buffer. Second, the pushing and grasping policies are respectively regarded as a generator and a discriminator and the pushing policy is trained with supervision of the grasping discriminator, thus densifying pushing rewards. To deal with the problem of distribution mismatch caused by different training settings of two policies, an alternating training stage is added to learn pushing and grasping in turn. A series of experiments carried out in simulation and real world indicate that our method can quickly learn effective pushing and grasping policies and outperforms existing methods in task completion rate and goal grasp success rate by less times of motion. Furthermore, we validate that our system can also adapt to goal-agnostic conditions with better performance. Note that our system can be transferred to the real world without any fine-tuning. Our code is available at https://github.com/xukechun/Efficient goal-oriented push-grasping synergy


翻译:我们注重的是面向目标的抓紧任务,在这个任务中,机器人本应在杂乱中抓住预先设定的目标对象,需要一些预留目标对象,例如推推,以获得稳定的抓紧。然而,在这个任务中,机器人只有在成功地抓住目标对象时,才从环境中获得积极的回报。此外,联合推拉和抓住行动序列,使奖励拖延问题更加复杂。因此,抽样效率低下仍然是本任务中的一项主要挑战。在本文件中,建议采用一个基于目标的等级调整强化学习公式,其样本效率高,以学习一种推力调整政策,以掌握在摇摆中传递的特定目标。在我们的工作中,抽样效率通过两种手段提高。首先,我们使用目标重贴标签来丰富环境环境上的有利收益。第二,推推力和握紧政策分别被视为发力和制导力,通过监督定位导师,从而降低奖励。为了处理由两种不同的培训环境导致的分布错乱问题,我们进行推移的系统在推动/推延率上,一个交替的任务阶段是学习和掌握方法,从而学习和掌握目前的目标。在学习和掌握方法中学习。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员