Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.
翻译:暂无翻译