The user review data have been demonstrated to be effective in solving different recommendation problems. Previous review-based recommendation methods usually employ sophisticated compositional models such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) to learn semantic representations from the review data for recommendation. However, these methods mainly capture the local and consecutive dependency between neighbouring words in a word window. Therefore, they may not be effective in capturing the long-term, non-consecutive, and global dependency between words coherently. In this paper, we propose a novel review-based recommendation model, named Review Graph Neural Network (RGNN). Specifically, RGNN builds a specific review graph for each individual user/item, where nodes represent the review words and edges describe the connection types between words. A type-aware graph attention mechanism is developed to learn semantic embeddings of words. Moreover, a personalized graph pooling operator is proposed to learn hierarchical representations of the review graph to form the semantic representation for each user/item. We compared RGNN with state-of-the-art review-based recommendation approaches on real datasets. The experimental results indicate that RGNN usually outperforms baseline methods in terms of mean square error.


翻译:用户审查数据被证明是解决不同建议问题的有效方法。以前基于审查的建议方法通常使用复杂的组成模型,如经常性神经网络(RNN)和进化神经网络(CNN),从审查数据中学习语义表达,但这种方法主要捕捉了相邻词在单词窗口中的本地和连续依赖性。因此,它们可能无法有效地捕捉长期、非连续性和全球对词义的一致依赖性。在本文件中,我们提出了一个新的基于审查的建议模型,名为《神经网络评论》(RGNN)。具体地说,RGN为每个用户/项目设计了一个具体的审查图表,其中节点代表审查词和边框描述字词之间的连接类型。开发了一个类型觉图形关注机制,以学习文字的语义嵌入。此外,还提议一个个性化的图形汇总操作器,学习审查图的等级表达方式,以形成每个用户/项目的语义代表。我们将RGNNN与基于州审查的建议中通常以标准为基准的RG方法进行比较结果。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员