Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate within its defined specifications. Deploying successful RUL prediction methods in real-life applications is a prerequisite for the design of intelligent maintenance strategies with the potential of drastically reducing maintenance costs and machine downtimes. In light of their superior performance in a wide range of engineering fields, Machine Learning (ML) algorithms are natural candidates to tackle the challenges involved in the design of intelligent maintenance systems. In particular, given the potentially catastrophic consequences or substantial costs associated with maintenance decisions that are either too late or too early, it is desirable that ML algorithms provide uncertainty estimates alongside their predictions. However, standard data-driven methods used for uncertainty estimation in RUL problems do not scale well to large datasets or are not sufficiently expressive to model the high-dimensional mapping from raw sensor data to RUL estimates. In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations. We perform a thorough evaluation and comparison of several variants of DGPs applied to RUL predictions. The performance of the algorithms is evaluated on the N-CMAPSS (New Commercial Modular Aero-Propulsion System Simulation) dataset from NASA for aircraft engines. The results show that the proposed methods are able to provide very accurate RUL predictions along with sensible uncertainty estimates, providing more reliable solutions for (safety-critical) real-life industrial applications.


翻译:在实际应用中采用成功的RUL预测方法是设计智能维护战略的先决条件,这种战略有可能大幅减少维护费用和机器故障时间。鉴于机械学习算法在广泛的工程领域表现优异,因此算法是应对设计智能维护系统所涉挑战的自然候选方法。特别是,鉴于与维持决定有关的潜在灾难性后果或与维持决定有关的巨大成本太迟或太早,因此,最好由ML算法在实际应用中提供不确定性的估计数。然而,用于估计RUL问题的不确定性的标准数据驱动方法不适宜于大型数据集,或不足以显示从原始传感器数据到RUL估算的高维度制图模型。在这项工作中,我们认为深高尚进程(DGP)是上述局限性的可能解决办法。我们对于应用的DGP的可靠变方进行彻底的评估和比较,以精确的NGPS(NGPS-R)的预测与SIMAL的准确性估算结果相比,为SIMUAA系统提供更精确的模拟数据结果。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
113+阅读 · 2020年3月20日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员