Inverted bottleneck layers, which are built upon depthwise convolutions, have been the predominant building blocks in state-of-the-art object detection models on mobile devices. In this work, we question the optimality of this design pattern over a broad range of mobile accelerators by revisiting the usefulness of regular convolutions. We achieve substantial improvements in the latency-accuracy trade-off by incorporating regular convolutions in the search space, and effectively placing them in the network via neural architecture search. We obtain a family of object detection models, MobileDets, that achieve state-of-the-art results across mobile accelerators. On the COCO object detection task, MobileDets outperform MobileNetV3+SSDLite by 1.7 mAP at comparable mobile CPU inference latencies. MobileDets also outperform MobileNetV2+SSDLite by 1.9 mAP on mobile CPUs, 3.7 mAP on EdgeTPUs and 3.4 mAP on DSPs while running equally fast. Moreover, MobileDets are comparable with the state-of-the-art MnasFPN on mobile CPUs even without using the feature pyramid, and achieve better mAP scores on both EdgeTPUs and DSPs with up to 2X speedup.
翻译:在移动设备最先进的天体探测模型中,反向瓶颈层以深相交错为基础,一直是移动设备上最先进的天体探测模型的主要构件。在这项工作中,我们通过重新审视常规移动加速器的有用性,质疑这一设计模式在一系列移动加速器上的最佳性。我们通过将常规移动加速器的有用性,在搜索空间中引入正常移动网络V2+SDDLite,并在搜索空间中有效地将其放在网络中。我们得到了一系列在移动加速器上实现最新结果的物体探测模型、移动数据,在移动加速器上实现最新结果。在COCO物体探测任务中,移动数据比移动移动移动网络3+SDDLite高出1.7 mAP,在类似移动加速器延迟时,我们通过1.9 mAP,移动数据比移动网络V2+SDDLite更优,在移动式计算机上,甚至移动式数据与移动式计算机和移动式计算机的MFPSPS和移动式硬盘相比,在移动式计算机上,移动数据可与移动式和移动式PPOP2-PSP-SD-SP-SPT-SD-SP-S-S-SPT-PT-M-S-SPT-SPT-SPT-S-S-SPT-SPT-SPT-PT-S-S-M-SPS-S-S-SPS-S-M-SPT-SPT-SPT-M-SPT-SPT-PT-M-SPSPT-M-SPSPSPS-PS-S-SPSPS-S-S-S-S-SPSPS-PS-PS-PS-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-PS-P-P-P-P-P-P-P-P-