Grasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents an efficient procedure for exploring the grasp space of a multifingered adaptive gripper for generating reliable grasps given a known object pose. This procedure relies on a limited dataset of manually specified expert grasps, and use a mixed analytic and data-driven approach based on the use of a grasp quality metric and variational autoencoders. The performances of this method are assessed by generating grasps in simulation for three different objects. On this grasp planning task, this method reaches a grasp success rate of 99.91% on 7000 trials.
翻译:格拉斯普(Grasp)规划和更具体地说,掌握空间探索仍然是机器人中的一个未决问题。 本条为探索多指适应性抓抓器的抓取空间提供了一个有效的程序, 以便根据已知物体的外形生成可靠的抓抓器。 这一程序依赖于有限的人工指定专家抓取数据集, 并使用混合分析方法和数据驱动方法, 其基础是使用掌握质量的计量和可变自动编码仪。 这一方法的性能是通过模拟三个不同物体的抓取来进行评估的。 在这项抓取规划任务中, 这一方法在7000项试验中达到了99.91%的成功率。