Ultra-lightweight model design is an important topic for the deployment of existing speech enhancement and source separation techniques on low-resource platforms. Various lightweight model design paradigms have been proposed in recent years; however, most models still suffer from finding a balance between model size, model complexity, and model performance. In this paper, we propose the group communication with context codec (GC3) design to decrease both model size and complexity without sacrificing the model performance. Group communication splits a high-dimensional feature into groups of low-dimensional features and applies a module to capture the inter-group dependency. A model can then be applied to the groups in parallel with a significantly smaller width. A context codec is applied to decrease the length of a sequential feature, where a context encoder compresses the temporal context of local features into a single feature representing the global characteristics of the context, and a context decoder decompresses the transformed global features back to the context features. Experimental results show that GC3 can achieve on par or better performance than a wide range of baseline architectures with as small as 2.5% model size.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/

Despite the excellent performance of neural-network-based audio source separation methods and their wide range of applications, their robustness against intentional attacks has been largely neglected. In this work, we reformulate various adversarial attack methods for the audio source separation problem and intensively investigate them under different attack conditions and target models. We further propose a simple yet effective regularization method to obtain imperceptible adversarial noise while maximizing the impact on separation quality with low computational complexity. Experimental results show that it is possible to largely degrade the separation quality by adding imperceptibly small noise when the noise is crafted for the target model. We also show the robustness of source separation models against a black-box attack. This study provides potentially useful insights for developing content protection methods against the abuse of separated signals and improving the separation performance and robustness.

0
0
下载
预览

We propose a new algorithm for joint dereverberation and blind source separation (DR-BSS). Our work builds upon the IRLMA-T framework that applies a unified filter combining dereverberation and separation. One drawback of this framework is that it requires several matrix inversions, an operation inherently costly and with potential stability issues. We leverage the recently introduced iterative source steering (ISS) updates to propose two algorithms mitigating this issue. Albeit derived from first principles, the first algorithm turns out to be a natural combination of weighted prediction error (WPE) dereverberation and ISS-based BSS, applied alternatingly. In this case, we manage to reduce the number of matrix inversion to only one per iteration and source. The second algorithm updates the ILRMA-T matrix using only sequential ISS updates requiring no matrix inversion at all. Its implementation is straightforward and memory efficient. Numerical experiments demonstrate that both methods achieve the same final performance as ILRMA-T in terms of several relevant objective metrics. In the important case of two sources, the number of iterations required is also similar.

0
0
下载
预览

Model efficiency has become increasingly important in computer vision. In this paper, we systematically study various neural network architecture design choices for object detection and propose several key optimizations to improve efficiency. First, we propose a weighted bi-directional feature pyramid network (BiFPN), which allows easy and fast multi-scale feature fusion; Second, we propose a compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time. Based on these optimizations, we have developed a new family of object detectors, called EfficientDet, which consistently achieve an order-of-magnitude better efficiency than prior art across a wide spectrum of resource constraints. In particular, without bells and whistles, our EfficientDet-D7 achieves stateof-the-art 51.0 mAP on COCO dataset with 52M parameters and 326B FLOPS1 , being 4x smaller and using 9.3x fewer FLOPS yet still more accurate (+0.3% mAP) than the best previous detector.

0
5
下载
预览

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

0
11
下载
预览

Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.

0
4
下载
预览

Self-attention is a useful mechanism to build generative models for language and images. It determines the importance of context elements by comparing each element to the current time step. In this paper, we show that a very lightweight convolution can perform competitively to the best reported self-attention results. Next, we introduce dynamic convolutions which are simpler and more efficient than self-attention. We predict separate convolution kernels based solely on the current time-step in order to determine the importance of context elements. The number of operations required by this approach scales linearly in the input length, whereas self-attention is quadratic. Experiments on large-scale machine translation, language modeling and abstractive summarization show that dynamic convolutions improve over strong self-attention models. On the WMT'14 English-German test set dynamic convolutions achieve a new state of the art of 29.7 BLEU.

0
4
下载
预览

Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.

0
5
下载
预览

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

0
11
下载
预览

Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train. However, normalizing along the batch dimension introduces problems --- BN's error increases rapidly when the batch size becomes smaller, caused by inaccurate batch statistics estimation. This limits BN's usage for training larger models and transferring features to computer vision tasks including detection, segmentation, and video, which require small batches constrained by memory consumption. In this paper, we present Group Normalization (GN) as a simple alternative to BN. GN divides the channels into groups and computes within each group the mean and variance for normalization. GN's computation is independent of batch sizes, and its accuracy is stable in a wide range of batch sizes. On ResNet-50 trained in ImageNet, GN has 10.6% lower error than its BN counterpart when using a batch size of 2; when using typical batch sizes, GN is comparably good with BN and outperforms other normalization variants. Moreover, GN can be naturally transferred from pre-training to fine-tuning. GN can outperform or compete with its BN-based counterparts for object detection and segmentation in COCO, and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks. GN can be easily implemented by a few lines of code in modern libraries.

0
7
下载
预览

In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named "few-example object detection". The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.

0
7
下载
预览
小贴士
相关论文
Naoya Takahashi,Shota Inoue,Yuki Mitsufuji
0+阅读 · 2021年2月15日
Taishi Nakashima,Robin Scheibler,Masahito Togami,Nobutaka Ono
0+阅读 · 2021年2月12日
EfficientDet: Scalable and Efficient Object Detection
Mingxing Tan,Ruoming Pang,Quoc V. Le
5+阅读 · 2019年11月20日
Shuhan Chen,Xiuli Tan,Ben Wang,Xuelong Hu
11+阅读 · 2019年4月15日
Chaoxu Guo,Bin Fan,Jie Gu,Qian Zhang,Shiming Xiang,Veronique Prinet,Chunhong Pan
4+阅读 · 2019年3月21日
Pay Less Attention with Lightweight and Dynamic Convolutions
Felix Wu,Angela Fan,Alexei Baevski,Yann N. Dauphin,Michael Auli
4+阅读 · 2019年1月29日
Efficient Road Lane Marking Detection with Deep Learning
Ping-Rong Chen,Shao-Yuan Lo,Hsueh-Ming Hang,Sheng-Wei Chan,Jing-Jhih Lin
5+阅读 · 2018年9月11日
Mason Liu,Menglong Zhu
11+阅读 · 2018年3月28日
Yuxin Wu,Kaiming He
7+阅读 · 2018年3月22日
Xuanyi Dong,Liang Zheng,Fan Ma,Yi Yang,Deyu Meng
7+阅读 · 2018年2月14日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
强化学习三篇论文 避免遗忘等
CreateAMind
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Top
微信扫码咨询专知VIP会员