Multi-Agent Reinforcement Learning (MARL) discovers policies that maximize reward but do not have safety guarantees during the learning and deployment phases. Although shielding with Linear Temporal Logic (LTL) is a promising formal method to ensure safety in single-agent Reinforcement Learning (RL), it results in conservative behaviors when scaling to multi-agent scenarios. Additionally, it poses computational challenges for synthesizing shields in complex multi-agent environments. This work introduces Model-based Dynamic Shielding (MBDS) to support MARL algorithm design. Our algorithm synthesizes distributive shields, which are reactive systems running in parallel with each MARL agent, to monitor and rectify unsafe behaviors. The shields can dynamically split, merge, and recompute based on agents' states. This design enables efficient synthesis of shields to monitor agents in complex environments without coordination overheads. We also propose an algorithm to synthesize shields without prior knowledge of the dynamics model. The proposed algorithm obtains an approximate world model by interacting with the environment during the early stage of exploration, making our MBDS enjoy formal safety guarantees with high probability. We demonstrate in simulations that our framework can surpass existing baselines in terms of safety guarantees and learning performance.


翻译:多智能体强化学习(MARL)可发现最大化回报的策略,但在学习和部署阶段没有安全保障。虽然使用线性时态逻辑(LTL)的屏蔽是确保单一智能体强化学习(RL)安全的有前途的形式方法,但当扩展到多智能体场景时,会导致保守行为。此外,在复杂的多智能体环境中合成屏蔽面临计算挑战。本文介绍了基于模型的动态屏蔽(MBDS)以支持MARL算法设计。我们的算法合成了分布式屏障,这些屏障是与每个MARL智能体并行运行的反应性系统,用于监测和纠正不安全的行为。屏蔽可以根据智能体的状态动态地分裂、合并和重新计算。这种设计使得在复杂的环境中,能够高效地合成屏蔽以监测智能体,而无需协调开销。我们还提出了一种不需要先验知识的合成屏蔽算法。通过与环境交互以建立近似世界模型,使我们的MBDS能以高概率享有正式的安全保障。我们在模拟中展示了我们的框架在安全保障和学习效果方面优于现有的基准系统。

0
下载
关闭预览

相关内容

智能体,顾名思义,就是具有智能的实体,英文名是Agent。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Reinforcement Learning with Simple Sequence Priors
Arxiv
0+阅读 · 2023年5月26日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
19+阅读 · 2022年11月8日
Arxiv
64+阅读 · 2022年4月13日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
相关论文
相关基金
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员