Consider a graph drawn on a surface (for example, the plane minus a finite set of obstacle points), possibly with crossings. We provide an algorithm to decide whether such a drawing can be untangled, namely, if one can slide the vertices and edges of the graph on the surface (avoiding the obstacles) to remove all crossings; in other words, whether the drawing is homotopic to an embedding. While the problem boils down to planarity testing when the surface is the sphere or the disk (or equivalently the plane without any obstacle), the other cases have never been studied before, except when the input graph is a cycle, in an abundant literature in topology and more recently by Despr\'e and Lazarus [SoCG 2017, J. ACM 2019]. Our algorithm runs in O(m + poly(g+b) n log n) time, where g >= 0 and b >= 0 are the genus and the number of boundary components of the input orientable surface S, and n is the size of the input graph drawing, lying on some fixed graph of size m cellularly embedded on S. We use various techniques from two-dimensional computational topology and from the theory of hyperbolic surfaces. Most notably, we introduce reducing triangulations, a novel discrete analog of hyperbolic surfaces in the spirit of systems of quads by Lazarus and Rivaud [FOCS 2012] and Erickson and Whittlesey [SODA 2013], which have the additional benefit that reduced paths are unique and stable upon reversal; they are likely of independent interest. Tailored data structures are needed to achieve certain homotopy tests efficiently on these triangulations. As a key subroutine, we rely on an algorithm to test the weak simplicity of a graph drawn on a surface by Akitaya, Fulek, and T\'oth [SODA 2018, TALG 2019].


翻译:暂无翻译

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
12+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月19日
Arxiv
0+阅读 · 2023年12月18日
Arxiv
0+阅读 · 2023年12月18日
Arxiv
0+阅读 · 2023年12月17日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
12+阅读 · 2023年9月21日
Arxiv
38+阅读 · 2020年12月2日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年12月19日
Arxiv
0+阅读 · 2023年12月18日
Arxiv
0+阅读 · 2023年12月18日
Arxiv
0+阅读 · 2023年12月17日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
12+阅读 · 2023年9月21日
Arxiv
38+阅读 · 2020年12月2日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
12+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员