Adversarial training has gained great popularity as one of the most effective defenses for deep neural networks against adversarial perturbations on data points. Consequently, research interests have grown in understanding the convergence and robustness of adversarial training. This paper considers the min-max game of adversarial training by alternating stochastic gradient descent. It approximates the training process with a continuous-time stochastic-differential-equation (SDE). In particular, the error bound and convergence analysis is established. This SDE framework allows direct comparison between adversarial training and stochastic gradient descent; and confirms analytically the robustness of adversarial training from a (new) gradient-flow viewpoint. This analysis is then corroborated via numerical studies. To demonstrate the versatility of this SDE framework for algorithm design and parameter tuning, a stochastic control problem is formulated for learning rate adjustment, where the advantage of adaptive learning rate over fixed learning rate in terms of training loss is demonstrated through numerical experiments.


翻译:作为防止数据点上对抗性扰动的深神经网络最有效的防御手段之一,Aversariar培训已获得极大支持,成为深神经网络防止数据点对抗性扰动的最有效防御手段之一,因此,研究兴趣已增加,了解对抗性培训的趋同性和稳健性。本文通过交替随机梯度下降来考虑对抗性培训的微量游戏。它把培训过程与连续时间随机随机差异性差异性比较(SDE)相近。特别是,确定了错误约束和趋同分析。这个SDE框架可以直接比较对抗性培训与随机梯度下降之间的对比;从(新的)梯度-流量角度分析确认对抗性培训的稳健性。这一分析随后通过数字研究加以证实。为了证明SDE框架在算法设计和参数调整方面的多功能性,为学习率调整制定了一种随机控制问题,通过数字实验可以证明适应性学习率在培训损失方面的固定学习率方面的优势。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员