Recently, many studies incorporate external knowledge into character-level feature based models to improve the performance of Chinese relation extraction. However, these methods tend to ignore the internal information of the Chinese character and cannot filter out the noisy information of external knowledge. To address these issues, we propose a mixture-of-view-experts framework (MoVE) to dynamically learn multi-view features for Chinese relation extraction. With both the internal and external knowledge of Chinese characters, our framework can better capture the semantic information of Chinese characters. To demonstrate the effectiveness of the proposed framework, we conduct extensive experiments on three real-world datasets in distinct domains. Experimental results show consistent and significant superiority and robustness of our proposed framework. Our code and dataset will be released at: https://gitee.com/tmg-nudt/multi-view-of-expert-for-chineserelation-extraction
翻译:最近,许多研究将外部知识纳入以特征为基础的模型中,以改善中国关系提取的性能。然而,这些方法往往忽视中国性质的内部信息,无法将外部知识的吵闹信息过滤出去。为了解决这些问题,我们建议采用综合观点专家框架(MOVE),以动态地学习中国关系提取的多视角特征。根据中国人的内部和外部知识,我们的框架可以更好地捕捉中国字符的语义信息。为了证明拟议框架的有效性,我们在不同的领域对三个真实世界数据集进行了广泛的实验。实验结果显示,我们提议的框架具有一贯和显著的优势和稳健性。我们的代码和数据集将在以下网站发布:https://gitee.com/tmg-nudt/multi-view-expert-for-chinerelation-extraction。我们的代码和数据集将在以下网站发布:https://gitee.com/tmg-nudt/mexcial-for-chenselation-extraction。</s>