Point clouds are often sparse and incomplete, which imposes difficulties for real-world applications. Existing shape completion methods tend to generate rough shapes without fine-grained details. Considering this, we introduce a two-branch network for shape completion. The first branch is a cascaded shape completion sub-network to synthesize complete objects, where we propose to use the partial input together with the coarse output to preserve the object details during the dense point reconstruction. The second branch is an auto-encoder to reconstruct the original partial input. The two branches share a same feature extractor to learn an accurate global feature for shape completion. Furthermore, we propose two strategies to enable the training of our network when ground truth data are not available. This is to mitigate the dependence of existing approaches on large amounts of ground truth training data that are often difficult to obtain in real-world applications. Additionally, our proposed strategies are also able to improve the reconstruction quality for fully supervised learning. We verify our approach in self-supervised, semi-supervised and fully supervised settings with superior performances. Quantitative and qualitative results on different datasets demonstrate that our method achieves more realistic outputs than state-of-the-art approaches on the point cloud completion task.


翻译:点云往往稀少且不完整, 给真实世界应用带来困难。 现有的形状完成方法往往产生粗糙的形状, 没有细微的细细细节。 考虑到这一点, 我们推出一个两分支的形状完成网络。 第一分支是一个分级的形状完成子网络, 以合成完整的物体。 第一分支是一个分级的形状完成子网络, 我们提议在密集点重建期间使用部分输入和粗略输出来保存物体细节。 第二分支是一个自动编码器, 以重建原始部分输入。 两分支有相同的特征提取器, 以学习形状完成的精确全球特征 。 此外, 我们提出了两个战略, 以便在没有地面真相数据时, 使我们的网络能够接受培训。 这是为了减轻现有方法对大量地面真相培训数据的依赖, 这些数据往往难以在现实世界应用中获得。 此外, 我们提出的战略还可以提高全面监督学习的重建质量。 我们核实我们在自我监督、 半监督和完全监督的环境中采用的方法, 以及高性地表现。 不同数据集的定量和定性结果显示我们的方法比完成任务点的云状更现实。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年7月30日
专知会员服务
14+阅读 · 2021年5月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
专知会员服务
164+阅读 · 2020年4月21日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
44+阅读 · 2020年4月17日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年7月30日
专知会员服务
14+阅读 · 2021年5月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
专知会员服务
164+阅读 · 2020年4月21日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
44+阅读 · 2020年4月17日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员