The proliferation of large-scale artificial intelligence and data-intensive applications has spurred the development of Computing Power Networks (CPNs), which promise to deliver ubiquitous and on-demand computational resources. However, the immense energy consumption of these networks poses a significant sustainability challenge. Simultaneously, power grids are grappling with the instability introduced by the high penetration of intermittent renewable energy sources (RES). This paper addresses these dual challenges through a novel Two-Stage Co-Optimization (TSCO) framework that synergistically manages power system dispatch and CPN task scheduling to achieve low-carbon operations. The framework decomposes the complex, large-scale problem into a day-ahead stochastic unit commitment (SUC) stage and a real-time operational stage. The former is solved using Benders decomposition for computational tractability, while in the latter, economic dispatch of generation assets is coupled with an adaptive CPN task scheduling managed by a Deep Reinforcement Learning (DRL) agent. This agent makes intelligent, carbon-aware decisions by responding to dynamic grid conditions, including real-time electricity prices and marginal carbon intensity. Through extensive simulations on an IEEE 30-bus system integrated with a CPN, the TSCO framework is shown to significantly outperform baseline approaches. Results demonstrate that the proposed framework reduces total carbon emissions and operational costs, while simultaneously decreasing RES curtailment by more than 60% and maintaining stringent Quality of Service (QoS) for computational tasks.
翻译:暂无翻译