In this paper, we extend the bilinear generalized approximate message passing (BiG-AMP) approach, originally proposed for high-dimensional generalized bilinear regression, to the multi-layer case for the handling of cascaded problem such as matrix-factorization problem arising in relay communication among others. Assuming statistically independent matrix entries with known priors, the new algorithm called ML-BiGAMP could approximate the general sum-product loopy belief propagation (LBP) in the high-dimensional limit enjoying a substantial reduction in computational complexity. We demonstrate that, in large system limit, the asymptotic MSE performance of ML-BiGAMP could be fully characterized via a set of simple one-dimensional equations termed state evolution (SE). We establish that the asymptotic MSE predicted by ML-BiGAMP' SE matches perfectly the exact MMSE predicted by the replica method, which is well known to be Bayes-optimal but infeasible in practice. This consistency indicates that the ML-BiGAMP may still retain the same Bayes-optimal performance as the MMSE estimator in high-dimensional applications, although ML-BiGAMP's computational burden is far lower. As an illustrative example of the general ML-BiGAMP, we provide a detector design that could estimate the channel fading and the data symbols jointly with high precision for the two-hop amplify-and-forward relay communication systems.


翻译:在本文中,我们将最初为高维通用双线回归而提议的双线通用传递信息(BIG-AMP)法推广到处理连锁问题的多层案例,例如继电器通信中出现的矩阵-因量化问题等。假设在统计上独立的矩阵条目有已知的前科,所谓的ML-BIGAMP的新算法可以接近高维限制中的一般和产品循环传播(LBPP),而计算复杂性则大大降低。我们表明,在大型系统限制下,ML-BIGAMP的无症状MSE性能可以通过一套简单的一维方程式(称为状态演化(SE))充分定性。我们确定,ML-BIGAMMP SE预测的无症状的MS MSE完全匹配了复制方法所预测的准确和产品循环传播(MMSE ) 的精确性能(LBBBB), 众所周知,这是最优的,但实际上,ML-BAMP仍然保留同一的BA-S-S-S-Slial精确度应用系统,这是MIMS-BI-BAAA 的低级的高级高级数据分析系统,这是一个高级的高级的高级的高级数据分析工具。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年9月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年9月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员