Given a natural language instruction and an input scene, our goal is to train a model to output a manipulation program that can be executed by the robot. Prior approaches for this task possess one of the following limitations: (i) rely on hand-coded symbols for concepts limiting generalization beyond those seen during training [1] (ii) infer action sequences from instructions but require dense sub-goal supervision [2] or (iii) lack semantics required for deeper object-centric reasoning inherent in interpreting complex instructions [3]. In contrast, our approach can handle linguistic as well as perceptual variations, end-to-end trainable and requires no intermediate supervision. The proposed model uses symbolic reasoning constructs that operate on a latent neural object-centric representation, allowing for deeper reasoning over the input scene. Central to our approach is a modular structure consisting of a hierarchical instruction parser and an action simulator to learn disentangled action representations. Our experiments on a simulated environment with a 7-DOF manipulator, consisting of instructions with varying number of steps and scenes with different number of objects, demonstrate that our model is robust to such variations and significantly outperforms baselines, particularly in the generalization settings. The code, dataset and experiment videos are available at https://nsrmp.github.io


翻译:根据自然语言教学和输入场景,我们的目标是训练一个模型,输出可由机器人执行的操纵程序,这一任务的先前方法具有以下限制之一:(一)使用手工编码符号来限制超出培训期间所见范围的一般性概念[1 (二)从指令中推断行动序列,但需要密集的次级目标监督[2]或(三)缺乏解释复杂指令所固有的更深的物体中心推理所需的语义[3]。相比之下,我们的方法可以处理语言和概念变异、端到端可训练,不需要中间监督。拟议的模型使用符号推理结构,在潜伏的神经对象中心代表上运作,允许对输入场进行更深入的推理。我们方法的核心是一个模块结构,由分级指令分析器和动作模拟器组成,以学习分解动作演示。我们用7-DOF调控器模拟环境的实验,由不同步骤和场景的指令组成,显示我们的模型对此类变异和大大超出目标的图像设置。在一般的设置中,ALADS/DS/DDDDDR是可用的基准。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员