In an influential 1877 paper, Zolotarev asked and answered four questions about polynomial and rational approximation. We ask and answer two questions: what are the best rational approximants $r$ and $s$ to $\sqrt{z}$ and $\mbox{sign}(z)$ on the unit circle (excluding certain arcs near the discontinuities), with the property that $|r(z)|=|s(z)|=1$ for $|z|=1$? We show that the solutions to these problems are related to Zolotarev's third and fourth problems in a nontrivial manner.
翻译:Zolotarev在1877年的一份有影响力的论文中询问并回答了四个关于多元和合理近似的问题。我们问并回答了两个问题:单位圆上最合理的近似物是多少? 美元和美元对美元和美元对美元和美元对美元,单位圆上是多少? 美元(不包括接近不连续的某些弧), 财产是$(z) ⁇ (z) ⁇ (z) $(z) $(z) $ z) $(z) $(z) 1)?我们表明,这些问题的解决方法与Zolotarev的第三和第四个问题有关。